加入收藏 | 设为首页 | 会员中心 | 我要投稿 保山站长网 (https://www.0875zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

无监督学习能带来二者的统一吗?

发布时间:2021-03-12 15:10:21 所属栏目:外闻 来源:互联网
导读:户数据,而这本身会带来灾难性后果。 眼下,数据泄露和损毁以及个人信息暴露的新闻到处都是,由身份盗窃和金融诈骗引起的事故令人痛心和惋惜,我们目睹着由无力保护用户数据而导致的企业名誉受损、监管蒙羞以及由此而引起的用户的强烈抵制态度。 数据隐私只

户数据,而这本身会带来灾难性后果。

眼下,数据泄露和损毁以及个人信息暴露的新闻到处都是,由身份盗窃和金融诈骗引起的事故令人痛心和惋惜,我们目睹着由无力保护用户数据而导致的企业名誉受损、监管蒙羞以及由此而引起的用户的强烈抵制态度。

数据隐私只是疯狂获取数据所带来的问题之一,大规模的收集和管理数据本身会耗费巨大成本:计算成本、存储成本、运营成本以及更多。我们正处于大数据和人工智能时代,但如果数据量要和人工智能同步成长,那么这些成本还将继续飞涨。

企业恨不得知道有关客户的一切数据,然而,没有人会愿意自己的行为数据被记录和分析,企业获取得越多,客户暴露得越多,这些数据一旦失窃,那最后的赢家将是偷数据的贼而非企业。

相比依赖数据,更要整合数据

如果我们可以更灵活地使用手头收集来的数据,对其进行深入的分析和挖掘,就会发现其实并不需要原本想象的那么多的数据。

其中,关键一步就是实现从对个体数据的收集和依赖转向对整合数据的分析和处理。比如,与其一个个的分析用户IP,不如直接分析IP前缀来区分不同网络分布下的用户群体,同样可以提升模型的性能。

这样做的好处在于,我们可以使用群体特征来淡化个体特征从而起到了保护用户个体隐私的效果。乍一听可能怪怪的,但我们确实能用更少的数据训练出更好的模型。

再比如,我们可以构建这样一个特征,这个特征记录了某个平台上的交易总金额,而单个订单的交易金额则被四舍五入到某一特定的阈值金额下,由此,我们便无须精确地知道个体用户的交易金额。

另外,通过分析用户群体的数量和行为,我们可以发掘用户模式并预测其未来的趋势,也就是说,我们可以在不必深入分析单个用户的情况下获取更有价值的信息。而且,派生数据可以产生派生信息,比如,通过分析IP范围来推断用户

(编辑:保山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读