加入收藏 | 设为首页 | 会员中心 | 我要投稿 保山站长网 (https://www.0875zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

如何破解加密zip文件的密码!

发布时间:2021-02-01 14:23:48 所属栏目:外闻 来源:互联网
导读:展望2021年(对于商业房地产来说,希望是光明的一年!),我的主要重点是成为地理和地理地图绘制新工具的专家。我的主要路线图目标之一是将我们在Terrain的见解转化为易于为最终用户解释的地图。 当今行业中的许多示例都是使用ArcGIS来完成的,ArcGIS是一种较旧

展望2021年(对于商业房地产来说,希望是光明的一年!),我的主要重点是成为地理和地理地图绘制新工具的专家。我的主要路线图目标之一是将我们在Terrain的见解转化为易于为最终用户解释的地图。

当今行业中的许多示例都是使用ArcGIS来完成的,ArcGIS是一种较旧的但成熟的数据映射工具。我相信可能会有更好的工具,这为我们的客户提供了一个对旧经典的新认识的机会。我感兴趣的两个工具是Uber开发的开源项目:H3和kepler.gl。我看到的H3的主要优势之一是能够根据缩放将世界细分为大小不同的六边形。

这解决了我们确定的早期问题之一,即不同的用户喜欢对都市圈内的社区,子市场或城市的边界采取不同的观点。这也使我们能够更好地在全球范围内开发难以获取边界数据的地图。

另一方面,kepler.gl很有趣,因为它相对容易为最终用户或MVP在线开发和托管。Uber开发了Kepler.gl,使用户可以在内部(技术和非技术)并快速开发可共享的地图,以可视化地理空间数据中的想法。kepler.gl支持的其他有趣的事情之一是能够轻松地可视化时间序列中的地理数据的功能。我希望从kepler.gl成为我们的MVP,然后在我们开始收集用户反馈时探索H3。

4. Chris Zeoli,Base10合作伙伴,负责人
 

我很高兴看到2021年的云技术将在技术领域进行创新。截至目前,云是存储公司数据的空间。这样做存在一些挑战,例如可伸缩性,效率,数据流等等。

我想看看如何改善云计算以平衡技术企业所面临的一些主要问题。许多公司都在努力将AI引入其业务中,这导致某些公司在技术行业落后。通过创新云计算,更多的公司应该能够在其公司中实施人工智能,并以更高的生产率部署项目/产品。

3. Riley Kinser,地形,产品负责人
 

强化学习主要由智能体(Agent)、环境(Environment)、状态(State)和动作(Action)、奖励(Reward)组成。智能体将在环境的当前状态下,根据奖励信号做出动作,从而达到环境中的不同状态并得到奖励。

除了强化学习外,机器学习也备受关注。机器学习是AI的一个子集,是通过不同场景中的经验来训练系统的能力。随着车辆变得越来越自动化,开发人员可以使用机器学习训练系统来识别对象,并用更少的数据更好地解释其环境。

再来看一下深度学习。深度学习就是从有限样例中通过算法总结出一般性的规律,并可以应用到新的未知数据上。例如,我们可以从一些历史病例的集合中总结出症状和疾病之间的规律。这样,当有新的病人到来时,我们可以利用总结出来的规律来判断这个病人得了什么疾病。

那么,强化学习、机器学习、深度学习三者的区别是什么?简单说,人工智能范围最大,涵盖机器学习、深度学习和强化学习。如果把人工智能比喻成孩子大脑,那么机器学习是让孩子去掌握认知能力的过程,而深度学习是这种过程中很有效率的一种教学体系。

由强化学习、机器学习等技术构成的人工智能,其良好的发展前景引人期待。从全国来看,据艾瑞咨询测算,2022年国内人工智能核心产业规模有望达到1573亿元,复合增速达58%,产业将持续快速增长。如此广阔的市场空间,吸引着社会各界投资者的关注。

值得一提的是,发展“以人为本”的人工智能是全社会的课题,需要政府、商界、学界及所有利益相关方共担责任,协力推动。作为技术应用与推广的主体,企业负有不可推卸的社会责任。在研究强化学习相关技术时,企业要自觉遵守法规制度和社会公约,以此促进其有序、可持续应用。

未来,全球的可持续发展越来越依赖于数据创造的价值,而人工智能是数字经济中应用十分广泛的技术之一。或许再过几年,AI将在精准农业、智能家居、远程医疗、自动驾驶等领域发挥更加重要的作用。

(编辑:保山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读