分布式系统的事务处理经典问题及模型
![]() 以下是作者原文: 在生产线上用一台服务器来提供数据服务的时候,经常会遇到如下的两个问题:
面对这些问题,我们不得不对服务器进行扩展,加入更多的机器来分担性能问题,以及解决单点故障问题。通常,我们会通过两种手段来扩展我们的数据服务:
使用第一种方案,无法解决数据丢失问题,单台服务器出问题时,一定会有部分数据丢失。所以,数据服务的高可用性只能通过第二种方法来完成——数据的冗余存储(一般工业界认为比较安全的备份数应该是3份,如:Hadoop和Dynamo)。 但是,加入的机器越多数据就会变得越复杂,尤其是跨服务器的事务处理,也就是跨服务器的数据一致性。这个是一个很难的问题!让我们用最经典的Use Case:“A帐号向B帐号汇钱”来说明一下,熟悉RDBMS事务的都知道从帐号A到帐号B需要6个操作:
为了数据的一致性,这6件事,要么都成功做完,要么都不成功,而且这个操作的过程中,对A、B帐号的其它访问必需锁死,所谓锁死就是要排除其它的读写操作,不然会有脏数据问题,这就是事务。但是,在加入了多个机器后,这个事情会变得复杂起来: 1,在数据分区的方案中:如果A帐号和B帐号的数据不在同一台服务器上怎么办?我们需要一个跨机器的事务处理。也就是说,如果A的扣钱成功了,但B的加钱不成功,我们还要把A的操作给回滚回去。在不同的机器上实现,就会比较复杂。 2,在数据镜像的方案中:A帐号和B帐号间的汇款是可以在一台机器上完成的,但是别忘了我们有多台机器存在A帐号和B帐号的副本。如果对A帐号的汇钱有两个并发操作(要汇给B和C),这两个操作发生在不同的两台服务器上怎么办?也就是说,在数据镜像中,在不同的服务器上对同一个数据的写操作怎么保证其一致性,保证数据不冲突? 同时,我们还要考虑性能因素,如果不考虑性能的话,事务完成并不困难,系统慢一点就行了。除了考虑性能外,我们还要考虑可用性,也就是说,一台机器没了,数据不丢失,服务可由别的机器继续提供。 于是,我们需要重点考虑下面的这么几个情况: (编辑:保山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |