有助于 AI 技术的优秀开源工具
于人工智能的开源机器学习框架。它主要是为了进行机器学习和深度学习的研究和生产而开发的。TensorFlow 允许开发者创建数据流的图结构,它会在网络或系统节点中移动,图提供了数据的多维数组或张量。 TensorFlow 是一个出色的工具,它有无数的优势。
2、Apache SystemML Apache SystemML 是由 IBM 创建的非常流行的开源机器学习平台,它提供了使用大数据的良好平台。它可以在 Apache Spark 上高效运行,并自动扩展数据,同时确定代码是否可以在磁盘或 Apache Spark 集群上运行。不仅如此,它丰富的功能使其在行业产品中脱颖而出;
它还支持深度学习,让开发者更有效率地实现机器学习代码并优化。 3、OpenNN OpenNN 是用于渐进式分析的开源人工智能神经网络库。它可帮助你使用 C++ 和 Python 开发健壮的模型,它还包含用于处理机器学习解决方案(如预测和分类)的算法和程序。它还涵盖了回归和关联,可提供业界的高性能和技术演化。 它有丰富的功能,如:
它可帮助你设计实现数据挖掘的先进方案,而从取得丰硕结果。 4、Caffe Caffe(快速特征嵌入的卷积结构)是一个开源深度学习框架。它优先考虑速度、模块化和表达式。Caffe 最初由加州大学伯克利分校视觉和学习中心开发,它使用 C++ 编写,带有 Python 接口。能在 Linux、macOS 和 Windows 上顺利运行。 Caffe 中的一些有助于 AI 技术的关键特性。
它可以帮助你激发创新,同时引入刺激性增长。充分利用此工具来获得所需的结果。 5、Torch Torch 是一个开源机器学习库,通过提供多种方便的功能,帮助你简化序列化、面向对象编程等复杂任务。它在机器学习项目中提供了最大的灵活性和速度。Torch 使用脚本语言 Lua 编写,底层使用 C 实现。它用于多个组织和研究实验室中。 Torch 有无数的优势,如:
6、Accord .NET Accord .NET 是著名的自由开源 AI 开发工具之一。它有一组库,可以用来组合使用 C# 编写的音频和图像处理库。从计算机视觉到计算机听觉、信号处理和统计应用,它可以帮助你构建用于商业用途一切需求。它附带了一套全面的示例应用来快速运行各类库。 你可以使用 Accord .NET 引人注意的功能开发一个高级应用,例如:
![]() (编辑:保山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |