加入收藏 | 设为首页 | 会员中心 | 我要投稿 保山站长网 (https://www.0875zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

大数据Spark运行环境:Standalone模式与配置周密

发布时间:2021-06-04 17:21:28 所属栏目:大数据 来源:互联网
导读:大数据Spark运行环境:Standalone模式与相关配置详解 Standalone模式 这里我们来看看只使用Spark自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark的Standalone模式体现了经典的master-slave模式。 集群规划: 大数据Spark运行环境:
大数据Spark运行环境:Standalone模式与相关配置详解
Standalone模式
这里我们来看看只使用Spark自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark的Standalone模式体现了经典的master-slave模式。
集群规划:
大数据Spark运行环境:Standalone模式与配置详解
1 解压缩文件
将spark-3.0.0-bin-hadoop3.2.tgz.tgz文件上传到Linux并解压缩在指定位置
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module 
cd /opt/module  
mv spark-3.0.0-bin-hadoop3.2 spark-standalone 
2 修改配置文件
1) 进入解压缩后路径的conf目录,修改slaves.template文件名为slaves
mv slaves.template slaves 
2) 修改slaves文件,添加work节点
hadoop102hadoop103hadoop104 
3) 修改spark-env.sh.template文件名为spark-env.sh
mv spark-env.sh.template spark-env.sh 
4) 修改spark-env.sh文件,添加JAVA_HOME环境变量和集群对应的master节点
export JAVA_HOME=/opt/module/jdk1.8.0_212 
SPARK_MASTER_HOST=hadoop102SPARK_MASTER_PORT=7077 
注意:7077端口,相当于hadoop3.x内部通信的8020端口,此处的端口需要确认自己的虚拟机配置
5) 分发spark-standalone目录
xsync spark-standalone 
3 启动集群
1) 执行脚本命令:
sbin/start-all.sh 
2) 查看三台服务器运行进程
================hadoop102================ 
3330 Jps 
3238 Worker 
3163 Master 
================hadoop103================ 
2966 Jps 
2908 Worker 
================hadoop104================ 
2978 Worker 
3036 Jps 
3) 查看Master资源监控Web UI界面: http://hadoop102:8080
4 提交应用
bin/spark-submit  
--class org.apache.spark.examples.SparkPi  
--master spark://hadoop102:7077  
./examples/jars/spark-examples_2.12-3.0.0.jar  
10 
--class表示要执行程序的主类
--master spark://hadoop102:7077 独立部署模式,连接到Spark集群
spark-examples_2.12-3.0.0.jar 运行类所在的jar包
数字10表示程序的入口参数,用于设定当前应用的任务数量
执行任务时,会产生多个Java进程
大数据Spark运行环境:Standalone模式与配置详解
执行任务时,默认采用服务器集群节点的总核数,每个节点内存1024M。
5 配置历史服务
由于spark-shell停止掉后,集群监控hadoop102:4040页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。
1) 修改spark-defaults.conf.template文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf 
2) 修改spark-default.conf文件,配置日志存储路径
spark.eventLog.enabled          true 
spark.eventLog.dir               hdfs://hadoop102:8020/directory 
注意:需要启动hadoop集群,HDFS上的directory目录需要提前存在。
sbin/start-dfs.sh 
hadoop fs -mkdir /directory 
3) 修改spark-env.sh文件, 添加日志配置
export SPARK_HISTORY_OPTS=" 
-Dspark.history.ui.port=18080 
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/directory 
-Dspark.history.retainedApplications=30" 
注:写成一行!!空格隔开!!!
参数1含义:WEB UI访问的端口号为18080
参数2含义:指定历史服务器日志存储路径
参数3含义:指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

(编辑:保山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读