-
价值变现的关键是组织优化和数据治理
所属栏目:[大数据] 日期:2022-06-08 热度:83
大数据、数据治理、数据湖以及目前被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,行[详细]
-
反映数据质量的八个指标
所属栏目:[大数据] 日期:2022-06-08 热度:60
数据的质量直接影响着数据的价值,并且还影响着数据分析的结果以及我们依此做出的决策的质量。质量不高的数据不仅仅是数据本身的问题,还会影响企业的经营管理决策;数据错误还不如没有数据,因为没有数据时,我们会基于经验和常识做出不见得是错误的决策,而[详细]
-
如何采用大数据技术帮助制定数字化策略?
所属栏目:[大数据] 日期:2022-06-08 热度:95
数字化采用被定义为通过优化遗留系统和利用新技术来重塑企业。近年来,大数据一直是数字化采用的中心。这就是全球各地方的公司去年在大数据技术上花费1620亿美元以上的原因。 整个过程远不止这些,但采用新技术并将其集成到业务工作流程中是关键。为了简化这[详细]
-
数据中台虚火?数据管控体系应该这么搭
所属栏目:[大数据] 日期:2022-06-08 热度:52
大数据、数据治理、数据湖以及被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,行业内[详细]
-
大数据和道路安全如何携手共进?
所属栏目:[大数据] 日期:2022-06-08 热度:127
大数据现在被广泛用于预测交通和避免事故 道路交通事故仍然是一个主要问题,因为全球每年有超过 125 万人丧生。根据世界卫生组织的一份报告,它仍然是 15 至 29 岁人群的主要死因。 世卫组织已承诺采取一项强有力的举措,到 2022 年减少道路交通事故造成的死[详细]
-
数据科学中数据收集的终极指南
所属栏目:[大数据] 日期:2022-06-08 热度:128
在当今世界,数据对任何一家企业的成功都起着关键作用。企业的目标受众、竞争对手产生的数据、工作领域的信息以及企业自己收集的数据可能会帮助找到更多客户、分析业务决策、重新优化业务模型或进入到其他市[详细]
-
2022年企业必须关注的几个大数据应用战略
所属栏目:[大数据] 日期:2022-05-25 热度:113
大数据是一个通用术语,指的是结构化和非结构化数据集合,它们对于典型的数据处理工具和系统来说过于庞大和复杂,因此难以处理。预测分析、用户行为分析以及其他从大数据中提取价值的高级数据分析方法,通常由大数据解决方案提供支持,并且很少局限于特定数[详细]
-
您是不是在楼宇安全中使用大数据?
所属栏目:[大数据] 日期:2022-05-25 热度:177
谈到大数据,物理安全有点姗姗来迟。企业已将各种数据源用于多种目的,例如向消费者进行营销(如谷歌、亚马逊和 Facebook)、提高运输效率(如包裹跟踪、航班调度和自动驾驶汽车),以及改善医疗保健服务(如、病历管理、人工智能辅助药物开发和患者健康风险评分)[详细]
-
2022年企业需要关注的12项数据和分析趋向
所属栏目:[大数据] 日期:2022-05-25 热度:137
数据和分析领导者需要在自适应人工智能(AI)系统、数据共享和数据编织等趋势的基础上推动新增长、韧性和创新。 趋势一:自适应AI系统(Adaptive AI systems) 同时,构建和管理自适应AI系统需要采用AI工程实践。AI工程能够通过编排和优化应用来适应、抵御或吸收[详细]
-
Gartner公布2022年数据分析十二大趋势
所属栏目:[大数据] 日期:2022-05-25 热度:112
关于数据的几项事实是:如今国内数据利用率仍然很低,企业数据孤岛问题显著,但数据分享成为更加主流的趋势,数据外泄的风险性愈发低于分享赢得的价值...... 对于企业来说,四种趋势和数据息息相关,发挥数据的潜在价值将带来新机会。 AI工程化是Gartner在近[详细]
-
终于有人将数据 信息 知识讲明白了
所属栏目:[大数据] 日期:2022-05-25 热度:118
数据无处不在,只是它们没有实体。 过去,人们习惯把数字的组合称为数据。但在今天,这样的理解显然不够全面。那么是否可以把数字、字符、字母的集合称为数据?也不准确。 在今天大数据的语境中,数据是可以被记录和识别的一组有意义的符号,一般可通过原始[详细]
-
数据映射优秀实践 类型 办法和工具的简要指南
所属栏目:[大数据] 日期:2022-05-25 热度:161
在任何应用程序集成、数据迁移以及一般的数据管理计划中,数据映射都是最关键的步骤之一。甚至可以这么认为:集成项目的成功在很大程度上取决于源数据到目标数据的正确映射。 本文将探讨有关数据映射的优秀实践,包括类型、常用方法以及一些有用的数据映射工[详细]
-
数据即服务 供给即时数据的顶级供应商
所属栏目:[大数据] 日期:2022-05-25 热度:92
并非所有可能使企业受益的数据都可以通过内部方式轻松生成、清理和分析。数据即服务提供商则是可以为企业提供数据即用型数据使用的实体。 云计算提供商 所有主要的云计算公司都为其客户维护大量开放数据集。在许多情况下,数据是免费的,并作为使用本地计算[详细]
-
调整数组元素顺序 你明白几分?
所属栏目:[大数据] 日期:2022-05-25 热度:83
有一个整数数组,我们想按照特定规则对数组中的元素进行排序,比如:数组中的所有奇数位于数组的前半部分。 实现思路 我们通过一个实例来分析下:假设有这样一个数组:[2, 4, 5, 6, 7, 8, 9, 11],将奇数移动到最前面后,就是:[11, 9, 5, 7, 6, 8, 4, 2]。[详细]
-
Spark SQL 字段血缘在 vivo 互联网的践行
所属栏目:[大数据] 日期:2022-05-25 热度:133
字段血缘是在表处理的过程中将字段的处理过程保留下来。为什么会需要字段血缘呢? 有了字段间的血缘关系,便可以知道数据的来源去处,以及字段之间的转换关系,这样对数据的质量,治理有很大的帮助。 Spark SQL 相对于 Hive 来说通常情况下效率会比较高,对于[详细]
-
帮你看明白Zookeeper如何实现服务注册发现
所属栏目:[大数据] 日期:2022-05-25 热度:160
对微服务稍有了解的小伙伴应该都听说过 Zookeeper,我们来看看在官网上是如何介绍的: Zookeeper 是一个分布式的、开源的分布式应用程序协调服务。 作为一个协调服务,常常用来配合其他中间件来用,比如:Dubbo + Zookeeper,Hadoop + Zookeeper等,Zookeepe[详细]
-
大数据分析如何发挥重要的作用
所属栏目:[大数据] 日期:2022-05-23 热度:104
在人们的工作和生活中,都会产生大量数据。人们每次打开电子邮件、在线联系他人、使用智能手机应用程序、与任何客户支持代表交谈、进行在线购买或联系虚拟助手时,服务提供商和开发商都会收集这些原始数据。这些庞大的、无组织的数据集群被称为大数据。 简单[详细]
-
大数据时代个人隐私数据保护的挑战与思考
所属栏目:[大数据] 日期:2022-05-23 热度:68
大数据时代个人隐私数据保护的挑战与思考: 一、大数据时代个人隐私数据泄露已成为全球重大的社会问题 随着信息技术的飞速发展,数据化生存已逐渐成为人类社会运行的常态,数据在公共管理、科学研究、企业营销等领域发挥着重要作用。 疫情发生以来,利用大数[详细]
-
数据管理战略 企业可实施的六个方面
所属栏目:[大数据] 日期:2022-05-23 热度:168
数据战略为更好的数据管理和治理奠定了基础,但仍有改进的空间。为了让数据管理走向现代化,企业需要正确的工具、环境、资源和权限来建立数据驱动的项目,并建立指导方针和边界,以确保成本、敏感信息的保护和法律合规性得到有效管理。 以下是企业在实施数据[详细]
-
阿里巴巴云原生大数据运维平台 SREWorks 正式开源
所属栏目:[大数据] 日期:2022-05-23 热度:150
随着行业不断发展,大数据AI也逐渐呈现云原生化的趋势。复杂的业务场景及其背后涉及到的不同技术方向的开源和自研,使得产品运维面临技术复杂度高、规模大、场景多等挑战。 阿里巴巴云原生大数据运维平台 SREWorks,沉淀了团队近10年经过内部业务锤炼的 SRE[详细]
-
现代数据栈是如何走向实时化的?
所属栏目:[大数据] 日期:2022-05-23 热度:88
时代已经变了,企业对传统的数据基础设施越来越厌烦,这些基础设施对关键的商业智能问题回答得很慢,而且经常过时,与当前的业务现实不同步,通常是一天或更长时间。 现代企业的需求和要求正在以戏剧性的方式转变。因此,旧的批处理模式(每天一次大的更新,[详细]
-
数据分析师七大实力 梳理标签体系
所属栏目:[大数据] 日期:2022-05-22 热度:70
大家好,我是爱学习的小xiong熊妹。 这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。 一、什么是标签体系? 围绕一个业务场景,实现业务闭环操作的若干个标签组合,称为标签体系。之所以需要标签体系,[详细]
-
大数据分析是啥?
所属栏目:[大数据] 日期:2022-05-22 热度:145
大数据分析:是指对规模巨大的数据进行分析,大数据可以概括为:数据量大,速度快,类型多,价值、真实性。 大数据可以概括为5个V, 数据量大、速度快、类型多、价值、真实性。 1.可视化分析 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最[详细]
-
大数据研究引用挑战预测增加
所属栏目:[大数据] 日期:2022-05-22 热度:82
尽管大数据行业有大量的软件平台和产品、开发人员和数据专业人士,以及许多热心的爱好者,但对于专业数据工作者和管理人员来说,在企业中实施数据战略仍然存在一些担忧和障碍。 数据分析平台提供商Unsupervised公司日前发表了一项名为2022年大数据恐惧和预测[详细]
-
专家视点 数据无处不在的云原生途径
所属栏目:[大数据] 日期:2022-05-22 热度:97
使用 Kubernetes 进行架构是必不可少的核心部分,它使数据分析异常灵活,可在业务需要的任何地方运行,并以高并发、高性能、效率和可用性大规模运行。 从金融服务和保险到制造和医疗保健等垂直领域的无数企业发现,他们需要公共和私有云、混合和边缘部署来最[详细]